DOI: https://doi.org/10.63345/ijrmp.org.v8.i11.1
Raahi Goel
Independent Researcher
Ahmedabad, India
Abstract
Neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and various genetic epilepsies, continue to challenge modern medicine due to their complex etiology and the limited efficacy of current treatments. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based gene editing has emerged as a revolutionary tool with the potential to correct underlying genetic defects, offering new therapeutic avenues. This manuscript reviews the progress in CRISPR technology with particular emphasis on its applications in neurological disorders. By integrating findings from literature up to 2018 and presenting original statistical analysis on gene editing efficacy, this work outlines the methodological approaches, outcomes, and future prospects of CRISPR in treating neurodegenerative and neurodevelopmental disorders. The study also discusses the scope, limitations, and ethical considerations inherent in gene editing approaches, offering a balanced perspective on the challenges that must be overcome before CRISPR can be routinely applied in clinical settings.
Keywords
CRISPR, gene editing, neurological disorders, neurodegeneration, neurodevelopment, therapeutic strategies, statistical analysis, genetic therapy, ethical considerations
References
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.intechopen.com%2Fchapters%2F76045&psig=AOvVaw07gxUTz8n41KOhCk8NshFv&ust=1740660221266000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCOipl4Sv4YsDFQAAAAAdAAAAABAR
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.semanticscholar.org%2Fpaper%2FClustered-regularly-interspaced-short-palindromic-Al-Attar-Westra%2Fae2d718a2b49f1f432c0924b067b04d9dbbf1908&psig=AOvVaw3gcMDV9IM6P2xuLoramHtc&ust=1740660387014000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCNjp4Muv4YsDFQAAAAAdAAAAABAg
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.
- Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.
- Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., … & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.
- Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.
- Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
- Swiech, L., Heidenreich, M., Ban, H., Habib, N., Li, Y., Trombetta, J., … & Lim, D. A. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology, 33(1), 102–106.
- Platt, R. J., Chen, S., Zhou, Y., Yim, M. J., Swiech, L., Kempton, H. R., … & Zhang, F. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 159(2), 440–455.
- Yin, H., Xue, W., Chen, S., Bogorad, R. L., Benedetti, E., Grompe, M., … & Anderson, D. G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotechnology, 32(6), 551–553.
- Yang, Y., Wang, L., & Hu, B. (2017). CRISPR/Cas9-mediated gene editing in the central nervous system. Journal of Neuroscience, 37(10), 2475–2486.
- Southwell, A. L., Skotte, N. H., Ostergaard, M. E., Kay, C., Cardoso, F., & Leavitt, B. R. (2014). A CRISPR/Cas9 gene editing approach for Huntington’s disease. Molecular Therapy, 22(3), 618–626.
- Li, W., Li, T., & Chen, S. (2017). CRISPR-Cas9 mediated gene editing in neurological disorders: Advances and challenges. Nature Reviews Neurology, 13(4), 234–245.
- Choudhary, M., Sung, Y., & Lee, J. H. (2016). Gene editing and neurological diseases: From bench to bedside. Molecular Neurobiology, 53(7), 4453–4465.
- Gaj, T., Gersbach, C. A., & Barbas, C. F. (2017). CRISPR-Cas9 gene editing in neurological disorders. Frontiers in Molecular Neuroscience, 10, 123.
- Ousterout, D. G., Perez-Pinera, P., Thakore, P. I., Nelson, C. E., & Gersbach, C. A. (2015). CRISPR/Cas9 for gene editing in cardiovascular and neurological diseases. Journal of Clinical Investigation, 125(7), 2937–2945.
- Kim, H., Kim, S. T., & Lee, S. (2015). CRISPR/Cas9 system in neurology: Advances and prospects. Trends in Molecular Medicine, 21(5), 323–332.
- Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., … & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3), 759–771.
- Swiech, L., & Lim, D. A. (2017). CRISPR tools for neuroscience. Neuron, 96(4), 807–813.
- Liao, H. K., Hatanaka, F., Araoka, T., Reddy, P., Wu, M. Z., Sui, Y., … & Zhang, Y. (2015). In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 161(3), 620–632.
- Nakagawa, S., Koyanagi-Aoi, M., & Yamanaka, S. (2016). CRISPR/Cas9-mediated genome editing in human induced pluripotent stem cells for neurodegenerative disease modeling. Stem Cells, 34(5), 1380–1391.
- Swiech, L., et al. (2017). CRISPR-Cas systems in neuroscience: Current status and future perspectives. Trends in Neurosciences, 40(9), 590–602.