DOI: https://doi.org/10.63345/ijrmp.org.v9.i6.1
Mohit Batra
Independent Researcher
Ghaziabad, India
Abstract
The advent of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology has ushered in a new era in gene therapy and drug development. This manuscript reviews the evolution and applications of CRISPR-based gene editing tools, emphasizing their role in correcting genetic defects, modeling diseases, and enabling targeted drug discovery. Through an analysis of literature up to 2019, we discuss the breakthroughs, challenges, and statistical trends that underline the rapid adoption of CRISPR in both preclinical and clinical settings. Our study employs a detailed methodology to assess CRISPR’s efficacy in gene correction and its potential for revolutionizing personalized medicine. The results indicate promising outcomes in disease models, although technical limitations and ethical considerations remain significant hurdles. We conclude with insights on the future scope of CRISPR applications in gene therapy and drug development, highlighting opportunities for more precise, efficient, and safe gene-editing strategies.
Keywords
CRISPR, gene therapy, drug development, gene editing, personalized medicine
References
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mdpi.com%2F1999-4915%2F4%2F10%2F2291&psig=AOvVaw3OBdziNGjwhbUcbj6L7jcV&ust=1740721705965000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCOCsmuqT44sDFQAAAAAdAAAAABAE
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mpg.de%2F11823627%2Fcrispr-cas9-palindromes-structure&psig=AOvVaw3OBdziNGjwhbUcbj6L7jcV&ust=1740721705965000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCOCsmuqT44sDFQAAAAAdAAAAABAR
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.
- Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., … & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.
- Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., … & Church, G.M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.
- Hsu, P.D., Lander, E.S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.
- Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.
- Barrangou, R., & Marraffini, L.A. (2014). CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Molecular Cell, 54(2), 234–244.
- Kim, H., & Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5), 321–334.
- Sander, J.D., & Joung, J.K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.
- Frock, R.L., Hu, J., Meyers, R.M., Ho, Y.J., Kii, E., & Alt, F.W. (2015). Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotechnology, 33(2), 179–186.
- Lino, C.A., Harper, J.C., Carney, J.P., & Timlin, J.A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1245.
- Doudna, J.A., & Charpentier, E. (2014). Genome editing: The new frontier of genome engineering. Science, 346(6213), 1258096.
- Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., … & Huang, B. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7), 1479–1491.
- Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., … & Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827–832.
- Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918.
- Savić, N., & Schwank, G. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Translational Research, 167(1), 15–21.
- Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., … & Anderson, D.G. (2014). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 32(6), 551–557.
- Kim, S., Kim, D., Cho, S.W., Kim, J., & Kim, J.S. (2018). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 27(6), 919–929.
- Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., et al. (2017). Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Journal of Biotechnology, 208, 44–53.
- Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., … & Liu, D.R. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotechnology, 33(1), 73–80.
- Kim, E., Koo, T., Jee, H.G., Cho, H.Y., & Jang, J. (2017). CRISPR/Cas9-based gene therapy: A promising approach for treating inherited retinal diseases. Experimental & Molecular Medicine, 49(3), e351.