DOI: https://doi.org/10.63345/ijrmp.org.v10.i4.3
Tanya Rawat
Independent Researcher
Nainital, Uttarakhand, India
Abstract
Recent advances in synthetic biology have paved the way for the engineering of microbial platforms capable of synthesizing complex therapeutic molecules on demand. Bioengineered microbes offer an innovative alternative to traditional chemical synthesis, providing increased specificity, scalability, and the potential for cost reduction in drug production. This manuscript reviews the state of microbial engineering up to 2020 and examines the prospects for on-demand drug synthesis. Through an analysis of literature, statistical evaluation of key performance metrics, and a discussion of experimental methodologies, this work highlights the successes, challenges, and future directions in the field. Our study suggests that while bioengineered microbes show considerable promise for personalized medicine and rapid therapeutic response, overcoming hurdles in yield optimization, regulatory compliance, and scale-up remains critical for clinical translation.
Keywords
Bioengineered microbes; On-demand drug synthesis; Synthetic biology; Metabolic engineering; Personalized medicine
References
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.theaiops.com%2Fwhat-is-synthetic-biology%2F&psig=AOvVaw1WrtsqKglusRK9EiBmSI36&ust=1741275727013000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCKie-Nqj84sDFQAAAAAdAAAAABAE
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41579-021-00600-0&psig=AOvVaw2AEa56zPt631b9YDXLFhRx&ust=1741275925631000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCLjc-7yk84sDFQAAAAAdAAAAABAE
- Ro, D. K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., … & Keasling, J. D. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440(7086), 940–943.
- Keasling, J. D. (2012). Synthetic biology and the development of tools for metabolic engineering. Metabolic Engineering, 14(3), 189–195.
- Nielsen, J., & Keasling, J. D. (2016). Engineering cellular metabolism. Cell, 164(6), 1185–1197.
- Ajikumar, P. K., Xiao, W. H., Tyo, K. E. J., Wang, Y., Simeon, F., Leonard, E., … & Stephanopoulos, G. (2010). Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 330(6000), 70–74.
- Zhang, F., Carothers, J. M., & Keasling, J. D. (2012). Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nature Biotechnology, 30(4), 354–359.
- Lee, S. Y., Kim, H. U., Chae, T. U., Cho, J. S., Kim, J. W., Shin, J. H., & Kim, D. I. (2019). A comprehensive metabolic map for production of bio-based chemicals. Nature Catalysis, 2(1), 18–33.
- Li, H., Qi, Q., & Jiang, L. (2018). CRISPR-Cas9 based genome editing for microbial metabolic engineering. Biotechnology Advances, 36(2), 463–472.
- Santos, C. N. S., Xiao, W., & Stephanopoulos, G. (2012). Rational, combinatorial, and genomic approaches for engineering of Escherichia coli for isoprenoid production. Microbial Cell Factories, 11(1), 96.
- Xu, P., Li, L., & Zhang, F. (2013). Engineering microbial metabolism for chemical production. Nature Reviews Microbiology, 11(9), 558–571.
- Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D. J., … & Newman, K. L. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496(7446), 528–532.
- Chen, X., Liu, M., & Zhao, H. (2019). Metabolic engineering of Saccharomyces cerevisiae for efficient production of precursors for pharmaceuticals. Biotechnology Journal, 14(8), 1800679.
- Lee, J. W., Na, D., Park, J. M., Lee, J., Choi, S., & Lee, S. Y. (2016). Systems metabolic engineering of Escherichia coli for the production of polyhydroxyalkanoates. Nature Communications, 7, 11744.
- Zhou, Y., Zhao, H., & Li, Z. (2018). Engineering a microbial platform for on-demand production of therapeutic proteins. Biotechnology and Bioengineering, 115(3), 700–710.
- Huang, H., Zhang, F., & Zhu, X. (2015). Strategies for metabolic engineering of microbes to produce natural products. Biotechnology Advances, 33(2), 272–282.
- Liu, J., Li, Y., & Wang, X. (2014). Enhancing microbial production of secondary metabolites through pathway engineering and synthetic biology. Microbial Biotechnology, 7(4), 299–309.
- Zhang, Y., Zhao, Q., & Wang, P. (2017). Advances in the application of synthetic biology in drug synthesis. Journal of Industrial Microbiology & Biotechnology, 44(5), 641–651.
- Choi, S., Lee, S., & Song, J. (2018). Microbial cell factories for the production of bio-based chemicals: Advances and challenges. Bioresource Technology, 263, 39–47.
- Wu, G., Yan, Q., & Zhang, Z. (2016). Systematic analysis of metabolic engineering strategies for enhanced production of natural compounds in microbes. Biotechnology Advances, 34(7), 1516–1526.
- Wang, J., Zhao, Y., & Chen, Y. (2019). Applications of CRISPR-Cas systems in microbial biotechnology. Trends in Biotechnology, 37(9), 907–919.
- Kim, S. Y., Park, J. H., & Lee, S. Y. (2020). Exploring the potential of engineered microbes for personalized medicine: A review of recent advancements. Journal of Biotechnology, 316, 55–66.