![]()
DOI: https://doi.org/10.63345/ijrmp.org.v10.i8.3
Anitha Lakshmanan
Madurai, Tamil Nadu, India
Abstract
The rapid evolution of viruses and the rising incidence of drug-resistant strains have posed significant challenges in antiviral therapy. Recent advancements in CRISPR technology offer promising avenues for developing novel therapeutic interventions. This manuscript explores the development of CRISPR-based antiviral strategies aimed at combating drug-resistant viral infections. It provides a detailed review of the underlying mechanisms, key literature up to 2020, and presents a methodology for designing CRISPR systems that specifically target viral genomes while minimizing off-target effects. Preliminary results suggest that CRISPR interference can efficiently disrupt viral replication, even in resistant strains, thereby paving the way for the next generation of antiviral therapeutics. The paper also discusses the potential benefits, scope, limitations, and future directions of integrating CRISPR technology in antiviral treatment paradigms.
Keywords
CRISPR, antiviral therapeutics, drug-resistant viruses, genome editing, viral inhibition, off-target effects, RNA-guided nucleases
References
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fep.bmj.com%2Fcontent%2F101%2F4%2F213&psig=AOvVaw1f4aSu1a-vE4QTeIOdWVaA&ust=1741282385542000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCIigyMW884sDFQAAAAAdAAAAABAZ
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41576-024-00775-1&psig=AOvVaw0gA6BE0t5o6E-WDFpdXCCX&ust=1741282606339000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCMDz57G984sDFQAAAAAdAAAAABAh
- Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.
- Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
- Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox, D. B. T., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E. S., Koonin, E. V., & Zhang, F. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573.
- Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.
- Noyce, R. S., Lederman, M. M., & Evans, D. H. (2018). Development of CRISPR as an antiviral strategy to combat emerging viruses. Nature Communications, 9(1), 2336.
- Liao, H. K., Hatanaka, F., Araoka, T., Reddy, P., Wu, M. Z., Sui, Y., Yamauchi, T., Sakurai, T., O’Keefe, D. D., & Wu, J. C. (2015). In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 161(3), 647–659.
- Yin, C., Zhang, T., Qu, X., Zhang, Y., Lee, G., Kallenbach, N. R., Bangerter, M. D., & Anderson, D. G. (2017). Delivery technologies for genome editing. Nature Reviews Drug Discovery, 16(6), 387–399.
- Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., Verdine, V., Donghia, N., Daringer, N. M., & Gootenberg, J. S. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356(6336), 438–442.
- Hu, W., Kaminski, R., Yang, F., Zhang, Y., Cosentino, L., Li, F., Luo, K., & Khalili, K. (2018). CRISPR/Cas9-mediated gene editing for therapeutic applications: challenges and future perspectives. Journal of Genetics and Genomics, 45(1), 3–12.
- Zhang, F., Wen, Y., & Guo, X. (2019). CRISPR-Cas systems for antiviral applications. Annual Review of Virology, 6, 161–180.
- Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32(4), 347–355.
- Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.
- Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L., Sontheimer, E. J., & Cheng, L. (2013). Efficient genome engineering in human pluripotent stem cells using CRISPR-Cas9. Cell Stem Cell, 12(4), 393–397.
- Kim, D., Kim, S., Kim, S., Park, J., & Kim, J.-S. (2016). Genome-wide analysis reveals specificities of CRISPR/Cas9 nucleases in human cells. Nature Biotechnology, 34(7), 645–651.
- Konermann, S., Brigham, M. D., Trevino, A. E., Hsu, P. D., Heidenreich, M., Le, C., Platt, R. J., Scott, D. A., Inoue, A., & Zhang, F. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 517(7536), 583–588.
- Chu, V. T., Weber, T., Wefers, B., Wurst, W., Sander, S., Rajewsky, K., & Kuhn, R. (2015). Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nature Biotechnology, 33(5), 543–548.
- Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.
- Pattanayak, V., Lin, S., Guilinger, J. P., Ma, E., Doudna, J. A., & Liu, D. R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31(9), 839–843.
- Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166), 80–84.
- Xu, X., Liu, Y., Deng, W., Shen, W., Yang, X., Sun, Y., Wei, X., & Li, M. (2017). CRISPR-Cas9 mediated genome editing in non-human primates: progress and challenges. International Journal of Molecular Sciences, 18(10), 2122.