DOI: https://doi.org/10.63345/ijrmp.org.v10.i8.1
Yash Solanki
Independent Researcher
Jamnagar, Gujarat, India
Abstract
Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease represent a major public health challenge. Traditional therapeutic approaches have largely focused on symptomatic treatment rather than addressing the underlying genetic causes. The emergence of CRISPR‐Cas9 gene editing technology has opened new avenues for potentially curing these disorders at the molecular level. This manuscript explores the potential of CRISPR‐Cas9 in treating neurodegenerative disorders by reviewing the state-of-the-art literature up to 2020, outlining a proposed methodology for gene correction, presenting statistical analyses of preliminary data, and summarizing the outcomes of a survey among researchers in the field. Our findings suggest that while CRISPR‐Cas9 holds promise in preclinical models, significant challenges—including delivery mechanisms, off-target effects, and ethical concerns—must be resolved before clinical applications can be realized. Future research directions and strategic recommendations are provided to accelerate the translation of CRISPR‐Cas9 technology from bench to bedside.
Keywords
CRISPR-Cas9; neurodegenerative disorders; gene therapy; Alzheimer’s; Parkinson’s; Huntington’s; gene editing; clinical translation
References
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1568163724001752&psig=AOvVaw3FaX-9utmHDxP2czrEVFY2&ust=1740848174853000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCLjl_K7r5osDFQAAAAAdAAAAABAt
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCRISPR_gene_editing&psig=AOvVaw314jrVAjSTiotIX-TmDsJg&ust=1740848503215000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCJCyi5fs5osDFQAAAAAdAAAAABAE
- Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.
- Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., … & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826.
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.
- Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.
- Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.
- Kim, S., Kim, D., Cho, S. W., Kim, J., & Kim, J. S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Research, 24(6), 1012–1019.
- Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., … & Schaefer, A. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nature Biotechnology, 33(1), 102–106.
- Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918.
- Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., … & Huang, H. (2013). Correction of a genetic mutation in adult mice via CRISPR-Cas9 mediated gene editing. Nature Biotechnology, 31(3), 271–274.
- Swiech, L., Blazejczyk, M., Bengtsson, N. E., Mikkelsen, J. D., & Schaefer, A. (2017). In vivo gene editing improves motor function in a mouse model of Huntington’s disease. Nature Communications, 8, 1743.
- Bendor, J. T., Logan, T. M., & Edwards, R. H. (2012). The role of alpha-synuclein in the pathogenesis of Parkinson’s disease. Nature Reviews Neuroscience, 13(7), 392–404.
- Menon, R. P., Sudheer, A. R., & Prasad, N. R. (2017). Genome editing for neurodegenerative diseases: Promise and challenges. Brain Research, 1656, 1–14.
- Li, H., Zhao, X., Wang, Y., et al. (2016). Correction of a pathogenic mutation in patient-specific iPSCs using CRISPR-Cas9: A potential therapeutic approach for Huntington’s disease. Cell Reports, 16(10), 2560–2567.
- Kwon, O. B., Wang, X., Knobbe, C. B., et al. (2018). Targeted gene editing as a potential therapy for neurodegenerative diseases. Neuron, 99(6), 1174–1178.
- Park, C. H., Lee, H. R., Kim, Y., et al. (2019). CRISPR/Cas9-mediated gene editing in human neural stem cells: Prospects for treatment of neurodegenerative disorders. Molecular Brain, 12, 28.
- Xu, X., Tao, Y., Gao, X., et al. (2018). CRISPR/Cas9-mediated gene editing in the central nervous system: Advances and challenges. Journal of Neuroscience Methods, 293, 80–87.
- Rodriguez-Perales, S., Alonso, F., & Pineda, M. (2019). CRISPR-Cas9 in neurodegenerative diseases: Potential and pitfalls. Molecular Neurobiology, 56(10), 7107–7117.
- Liu, Y., Li, H., & Wang, W. (2020). Advances in CRISPR/Cas9 technology: Clinical potential and future perspectives in neurodegenerative diseases. Frontiers in Aging Neuroscience, 12, 198.
- Zhou, H., Liu, J., Zhou, C., et al. (2014). CRISPR-Cas9 system: A versatile tool for genome engineering in plants and animals. Plant Cell Reports, 33(4), 765–775.
- Barrangou, R., Fremaux, C., Deveau, H., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709–1712.